
CCM

Centros de Control de Motores de Baja Tensión

Centros de Control de Motores de Baja Tensión

Contenido

Cuadros Eléctricos	04
CCMs BT	06
Aplicaciones	07
Características Constructivas	08
Características Técnicas	16
Certificaciones	17
CCMs Inteligentes	18
CCMs de Baja Tensión Resistentes a los Arcos Internos	20
Dimensiones (mm)	22

Con tecnología totalmente desarrollada por su cuerpo técnico, los Cuadros Eléctricos WEG son proyectados por ingenieros y técnicos continuamente involucrados en investigación, desarrollo y concepción de nuevos productos con la más moderna tecnología, ofreciendo a los clientes productos con alto grado de fiabilidad, eficiencia y durabilidad. Dentro de esa estructura particular, aliados a la capacidad y experiencia de su equipo técnico, y contando con modernos conceptos y herramientas de informática del mercado, los Cuadros Eléctricos WEG son desarrollados para los más diversos sectores del mercado, cumpliendo elevados requisitos de calidad y performance con alto índice de estandarización.

Los CCMs BT WEG fueron desarrollados para atender a los más diversos sectores del mercado, cumpliendo requisitos de calidad y performance, comparables a los mejores productos disponibles en el mercado mundial.

CCMs BT

Proyectados con un alto índice de estandarización, estos productos permiten facilidad de montaje, instalación, mantenimiento, expansiones futuras e intercambiabilidad entre unidades del mismo modelo de CCM con igual tamaño y función. Certificados de acuerdo con la norma IEC 61439-1 y coordinaciones tipo 1 y tipo 2, conforme IEC 60947, los CCMs WEG garantizan alta fiabilidad de operación y mantenimiento con total seguridad.

Mantenimiento fácil y rápido con costos reducidos

Fácil acceso a los terminales de entrada/salida de cables

Modularidad del sistema permitiendo modificaciones y/o ampliaciones futuras con bajo costo

Disponibles en diversas versiones de acuerdo con su necesidad

Aplicaciones

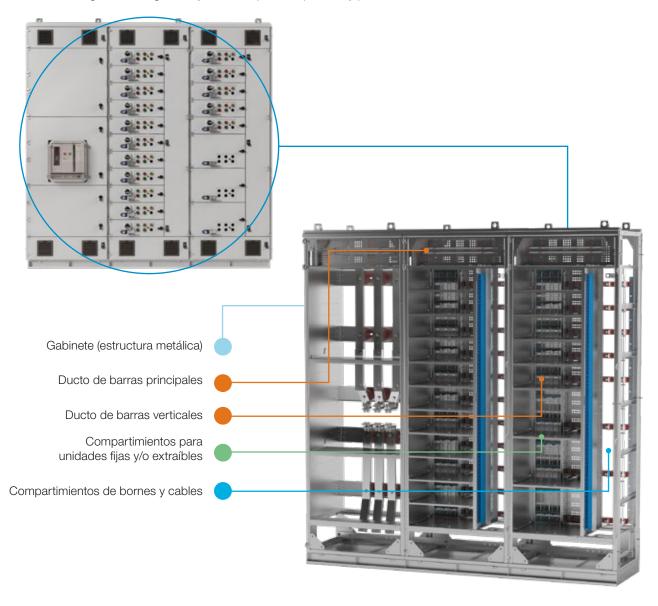
Los CCMs WEG tienen una amplia gama de aplicaciones en sistemas de baja tensión de los más distintos sectores:

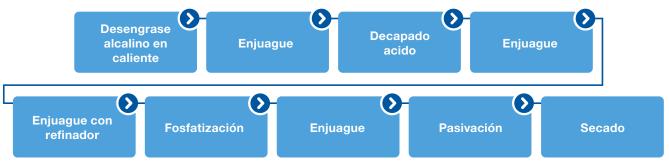
- Tratamiento de agua
- Estaciones de bombeo
- Alimentadores

- Fabricación de papel
- Aplicaciones offshore
- Arranque de motores de baja tensión

Segmentos

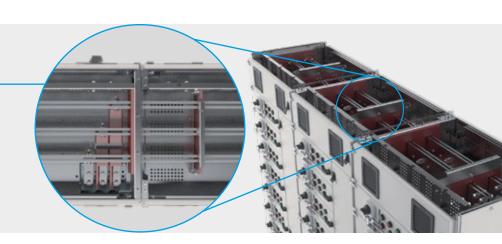
Plástico y Goma



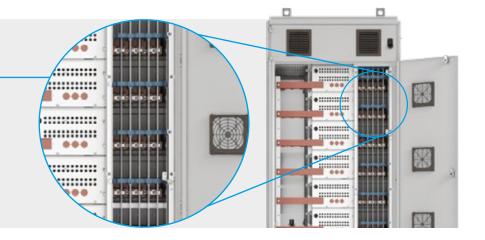

Características Constructivas

Los CCMs WEG cumplen las normas IEC 61439-1, VDE 0660 P-5 y están disponibles en las formas constructivas de separación interna 3b y 4b, siendo proyectados para operar a una temperatura ambiente de 40 °C (limitado a un promedio de 35 °C en 24 horas) y mínima de -5 °C, con una elevación de temperatura de acuerdo con la tabla 10 de la IEC 61439-1 hasta una altitud máxima de 2.000 msnm (para altitudes de instalación superiores a 2.000 m, bajo consulta).

Los CCMs WEG presentan una forma constructiva de acuerdo con las partes presentadas en las figuras a continuación, garantizando un alto grado de seguridad y fiabilidad para el operador y para las instalaciones.


Proceso de Tratamiento Superficial de las Chapas Antes de Recibir el Pintado Final

Barramientos


Barras Horizontales (Principal)

Con barras estándares para corrientes hasta 4.000 A, los CCMs WEG son suministrados con las barras principales ubicadas horizontalmente en la parte superior del CCM con acceso por tapas de cierre en la parte de arriba, frontal o posterior.

Barras Verticales

Ubicadas en la parte posterior de cada una de las columnas, las barras verticales tienen hasta once salidas para conexión de las garras de fuerza de las unidades funcionales y están disponibles en versiones de 800 A o 1.000 A.

La barra vertical para configuración extraíble posee obturadores (guillotinas) automáticos que impiden el toque accidental o inadvertido, cuando las unidades son retiradas de sus compartimientos.

Barras de Mando y Protección (Barra Tierra)

Los CCMs WEG pueden ser suministrados con hasta 04 barras de mando con sección transversal de 10x3 mm, permitiendo alimentación por fuente externa o interna al CCM, a través de transformadores de mando.

La barra tierra permite la conexión de los conductores de protección de los componentes eléctricos, para garantizar la equipotencialidad de la partes conductoras expuestas.

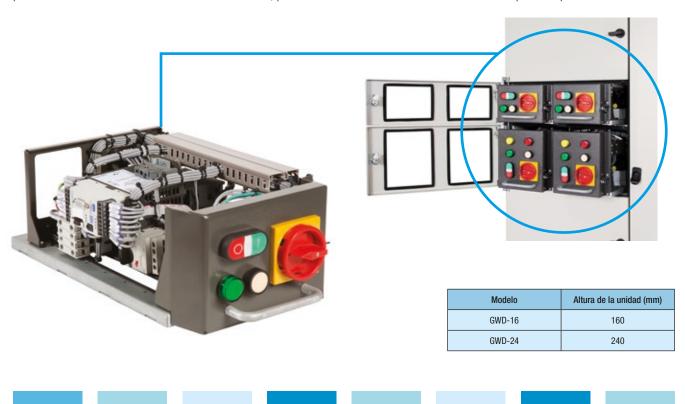
Características Constructivas

Unidades Funcionales (Módulos)

Los Centros de Control de Motores WEG tienen como una de sus principales características la separación física entre sus unidades funcionales, también llamadas de módulos. Esas unidades están disponibles en las versiones fijas (GWF), compactas (GWD) y extraíbles (GWE) permitiendo diversas combinaciones de unidades por columna, hasta una altura máxima de 1.760 mm.

- Acceso frontal para las unidades y compartimientos.
- Posibilidad para colocación de hasta 3 candados con la puerta del módulo cerrada.
- Permiten hacer mediciones termográficas en los terminales de las garras de fuerza sin desenergizar la unidad.
- Consola de mando basculante para acceso a los componentes sin la extracción de la unidad funcional de su compartimiento
- Unidades funcionales con diversos tipos de circuitos:
 - Alimentadores
 - Arranque directo
 - Arranque reversible
 - Arrancador suave
 - Convertidor de frecuencia

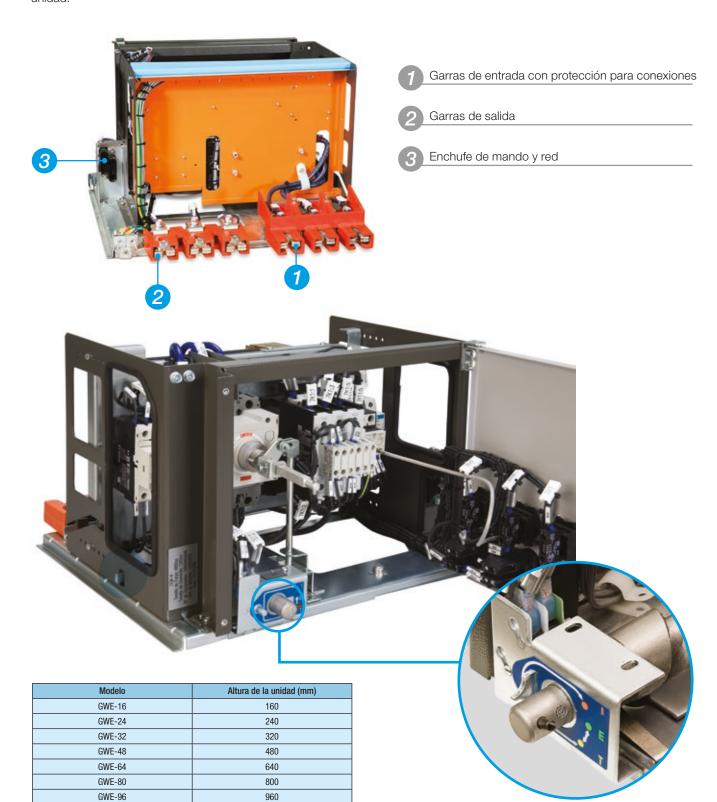
Unidades Fijas (GWF)


Los componentes son ensamblados en una placa de montaje fija en cada uno de los compartimientos y pueden ser suministrados en hasta 12 distintos tamaños, de acuerdo con lo indicado en la tabla a continuación.

Modelo	Altura de la unidad (mm)
GWF-16	160
GWF-24	240
GWF-32	320
GWF-48	480
GWF-64	640
GWF-80	800
GWF-96	960
GWF-112	1.120
GWF-128	1.280
GWF-144	1.440
GWF-160	1.600
GWF-176	1.760

Unidades Compactas (GWD)

Esta línea de unidades extraíbles trabaja el concepto constructivo compacto, eficiente y con reducción de piezas mecánicas, pero manteniendo los estándares de seguridad con posiciones de extraído, prueba e insertado. Las unidades de la línea GWD se destinan a los arranques directos de motores hasta 7,5 kW en 480 V, en las versiones convencionales o inteligentes que pueden ser suministradas en 2 distintos tamaños, para instalación de dos unidades funcionales por compartimiento.

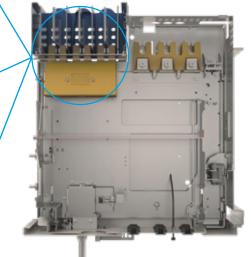


Características Constructivas

Unidades Extraíbles (GWE)

Los componentes son ensamblados en una unidad funcional que permite la extracción total de la unidad del interior del CCM y pueden ser suministrados en hasta 7 distintos tamaños. La extracción/inserción de las garras de fuerza (alimentación) es realizada a través de un dispositivo caracol para accionamiento de las garras de fuerza. Las unidades extraíbles GWE son fabricadas de acuerdo con las exigencias de la norma IEC 61439-1 que regula el sistema de extracción y enclavamiento de la unidad.

Unidades Extraíbles


Posición INSERTADA (I): Garras de fuerza (alimentación) y circuitos de mando conectados con la unidad lista para funcionamiento. No permite el cambio para posición de Prueba (T) sin antes apagar el dispositivo de maniobra principal de la unidad.

Posición de PRUEBA (T): Garras de fuerza (alimentación) desconectadas y circuito de mando conectado. En esa posición es posible realizar pruebas en la unidad funcional pero sin presencia de tensión en los circuitos de potencia.

Posición EXTRAÍDA (E): Garras de fuerza (alimentación) y circuito de mando plenamente desconectados. En esa posición es posible la extracción total de la unidad funcional de su compartimiento con total seguridad para el operador.

Dispositivos de Puesta a Tierra / Opcional

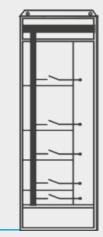
Para permitir la condición de puesta a tierra temporaria, durante las intervenciones para mantenimiento en las unidades funcionales, WEG ofrece como accesorio los dos modelos de dispositivos presentados a continuación, para instalación en sus CCMs.

Puesta a Tierra Provisorio

A través de una unidad de uso universal para cualquier tamaño de compartimiento.

Puesta a Tierra Individual por Unidad

En ese caso es empleada una llave seccionadora, individual por unidad, que es ensamblada en el compartimiento lateral de mando, siendo enclavada mecánicamente con el interruptor principal de la unidad, poniendo a tierra las garras de salida cuando la unidad se encuentra en la condición extraída.

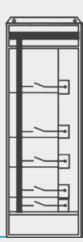


Características Constructivas

De acuerdo con el ítem 8.101 de la norma IEC 61439-2, que trata sobre las formas de separación interna de los conjuntos por medio de particiones o barreras (metálicas o no metálicas), las formas típicas de separación por particiones son las presentadas en la tabla a continuación:

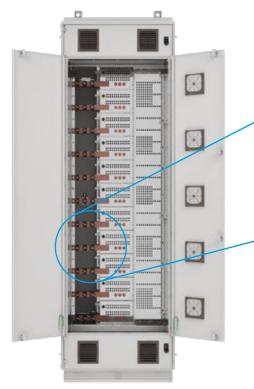
Critério principal	Subcriterio		Forma
Sin separación		Forma 1	
Separación entre las barras de distribución y	Los terminales para los conductores externos no necesitan ser separados de las barras	Forma 2a	
las unidades funcionales	Los terminales para los conductores externos están separados de las barras	Forma 2b	
Separación entre las barras y unidades funcionales, así como entre	Los terminales de conexión no deben ser separados de las barras	Forma 3a	
todas las unidades funcionales. Separación de los terminales de conexión de salida de las unidades, pero no entre ellos	Los terminales de conexión deben estar separados de las barras	Forma 3b	
Separación entre las barras y unidades funcionales, así como entre	Los terminales de conexión están en el mismo compartimiento que la unidad funcional asociada	Forma 4a	
todas las unidades funcionales, incluyendo, además, los terminales de conexión que son parte integral de la unidad funcional	Los terminales de conexión no están en el mismo compartimiento que la unidad funcional asociada, debiendo ir en un compartimiento Forma 4b individual y separado	Forma 4b	

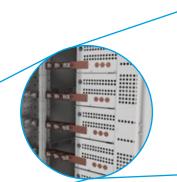
La forma de separación interna de los conjuntos debe ser según el acuerdo entre el fabricante y el cliente final. Para la línea de CCMs WEG las opciones disponibles son 3b y 4b.

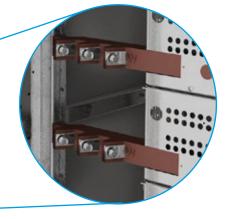


Forma 3b

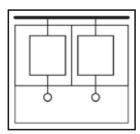
Los terminales de conexión deben estar separados de las barras y de las unidades funcionales.

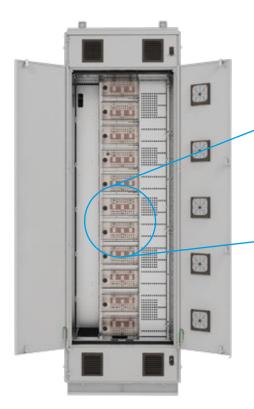

Forma 4b


Los terminales de conexión deben estar separados de las barras y de las unidades funcionales, en un compartimiento individual y separado.

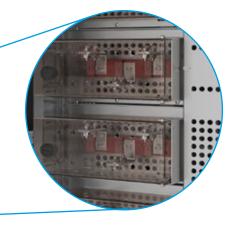


Forma de Separación Interna 3b

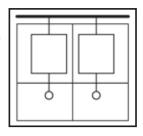

Separación entre las barras, terminales de salida y unidades funcionales. Cada una de las unidades funcionales está alojada en un compartimiento separado.



- Las conexiones de los conductores de fuerza están dispuestas en un mismo compartimiento (Compartimiento de Bornes y Cables)
- Los servicios de mantenimiento exigen cuidados, ya que en el mismo compartimiento las conexiones de otras unidades podrán estar energizadas
- Puertas posteriores bipartidas que reducen el espacio necesario para el acceso posterior, aumentando el área de circulación/escape en un caso de emergencia



Forma de Separación Interna 4b


Separación entre las barras, terminales de salida y unidades funcionales. Cada una de las unidades funcionales está alojada en un compartimiento separado con sus terminales de salida, también ubicados en un compartimiento individual y separado.

- Las conexiones de los conductores de fuerza y mando están dispuestas en compartimientos distintos
- Servicios de mantenimiento totalmente seguros, ya que otras unidades que estén energizadas estarán con sus conexiones protegidas
- Puertas posteriores bipartidas que reducen el espacio necesario para el acceso posterior, aumentando el área de circulación/escape en un caso de emergencia

Características Técnicas

Clase de tensión		690 V ca		
Tensión nominal de la rede		220, 380, 400, 440, 480 V		
Tensión de mando		220 V ca / 127 V ca ou 125 V cc / 24 V cc		
Frecuencia nominal		60 Hz o 50 Hz		
Corrientes nominales		Barra principal hasta 4.000 A y vertical hasta 1.000 A		
Corriente nominal de corta duración (1s)		50 kA o 65 kA o 80 kA simétrico		
Nivel básico de aislamiento (NBI)		8 kV, según la norma IEC 61439-1		
Grado de protección ¹⁾		IP42		
Tipo de instalación		Resguardada		
Ensayos de rutina		Según la norma IEC 61439-1		
Ensayos de tipo		Según la norma IEC 61439-1		
Temperatura ambiente		-5 °C+40 °C (limitado a un promedio de 35 °C en 24 horas)		
Altitud máxima		2.000 m (para altitudes de instalación superiores a 2.000 m bajo consulta)		
Pintura y acabado		Pintura epoxi polvo por proceso electrostactico		
Tratamiento superficial de chapas		Chapas externas/internas: proceso químico de fosfatización		
matamiento supernotal de chapas		Blindajes internos: zincados		
Tratamiento superficial de las barras		Proceso galvánico de estañado		
		Gris claro RAL 7032 (pertas, laterales y techos)		
Color		Gris oscuro RAL 7022 (estructura y base de fijación)		
		Placas de montaje zincadas		
	Estructura	2,6 mm (12 MSG)		
Espesura de las chapas	Puertas	1,9 mm (14 MSG)		
Cierres / blindajes		1,9 mm (14 MSG)		
	Altura	2.300 mm (hasta 3.150 A) y 2.400 mm (4.000 A)		
Dimensiones de las columnas	Ancho	Columnas de entrada de 500 mm, 750 mm o 1.000 mm y columnas de salida de 750 mm		
	Profundidad	Desde 600 mm hasta 950 mm		
Peso aproximado por columna		400 kg		
Zona sísmica ²⁾		UBC-3 (aceleración horizontal y vertical de 0,3 g)		

Notas: 1) Otros grados de protección bajo consulta. 2) A través de simulación computacional (Análisis Modal).

Tipos de Unidades y Cantidades Máximas (Mismo Tamaño) por Columna

Unidad fija GWF	Unidad extraíble GWE	Cantidad máxima (por columna)	Altura da unidad (mm)
GWF-16	GWE-16	11	160
GWF-24	GWE-24	6	240
GWF-32	GWE-32	5	320
GWF-48	GWE-48	3	480
GWF-64	GWE-64	2	640
GWF-80	GWE-80	2	800
GWF-96	GWE-96	1	960
GWF-112	-	1	1.120
GWF-128	-	1	1.280
GWF-144	-	1	1.440
GWF-160	-	1	1.600
GWF-176	-	1	1.760
Unided outrolible compacts CMD	GWD-16	22	160
Unidad extraíble compacta GWD	GWD-24	12	240

Dimensional Orientativo de las Unidades Equipadas

Arranque Directo

Arranque directo									
Modelo de la unidad GWD-16 GWD-24 GWE-16 GWE-24 GWE-32 GWE-48 GWE-64									
	220 V	5	5	10	25	40	75	125	
Potencia (HP)	380 V	10	10	20	40	75	125	175	
	440 V	10	10	20	50	75	150	175	

Arranque Reversible

Arranque reversible							
Modelo de la unidad GWE-16 GWE-32 GWE-48 GWE-64							
	220 V	6	12,5	40	50		
Potencia (HP)	380 V	10	25	50	60		
	440 V	12,5	30	50	60		

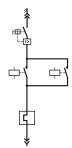
Arrancador Suave

Arrancador suave								
Modelo de la unidad GWE-16 GWE-32 GWE-48 GWE-64 GWF-96								
	220 V	5	10	15	50	75		
Potencia (HP)	380 V	10	15	30	75	150		
	440 V	10	20	60	100	150		

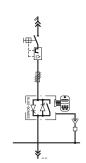
Convertidor de Frecuencia

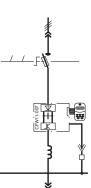
	Convertidores de frecuencia									
Modelo de	la unidad	GWE-16	GWE-32	GWE-48	GWE-64	GWF-80	GWF-96	GWF-112	GWF-176	
	220 V	1,5	4	-	7,5	-	25	40	50	
Potencia (HP)	380 V	1,5	5	7,5	15	30	50	75	100	
	440 V	1,5	6	7,5	15	30	50	75	100	

Certificaciones


Fabricados en conformidad con las principales normas internacionales, tales como IEC 61439 y VDE 0660 P-5, los CCMs WEG, fueran probados en laboratorios internos y externos para atender los requisitos de estas normas.

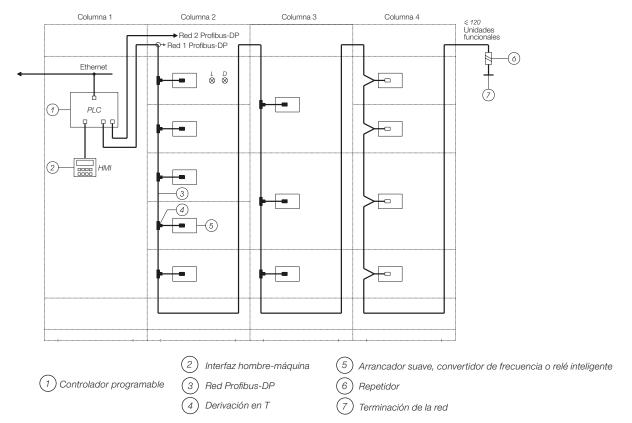
Presentan también versiones a prueba de arco fabricadas según la guía IEC 61641 (Technical Report IEC 61641).





Listado de las pruebas de tipo conforme el ítem 10 de la norma IEC 61439-1:

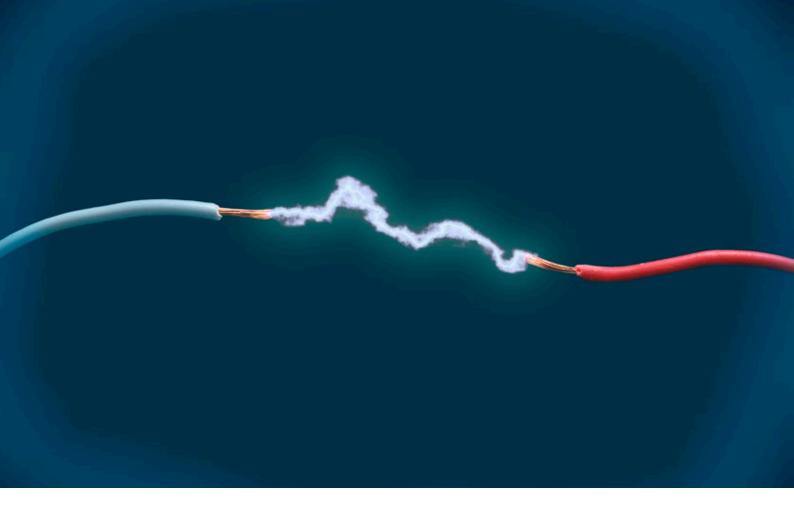
- Límites de elevación de temperatura
- Propiedades dieléctricas (NBI)
- Corriente soportable de cortocircuito
- Eficacia del circuito de protección
- Distancias de aislamiento y de drenaje
- Funcionamiento mecánico
- Grado de protección


CCMs Inteligentes

El sistema inteligente del CCM puede estar compuesto por Arrancadores Suaves, convertidores de frecuencia o relés inteligentes instalados en las unidades funcionales, denominados esclavos, y un controlador programable (PLC) instalado en el compartimiento apropiado del CCM, denominado maestro. Los datos del PLC pueden ser ingresados a través de Interfaz Hombre-máquina (HMI), o a través de microcomputadoras (PC) instaladas en salas de control, o en la propia estructura del CCM.

Ventajas de la Utilización de CCM Inteligente

- Monitoreo, supervisión y control a distancia vía HMI, PLC, PC o red
- Fiabilidad para la continuidad del proceso
- Instalación en locales centralizados para facilidad de operación y mantenimiento
- Versatilidad para comando y protección de un gran número de motores
- Mayor fiabilidad en el sistema de protección
- Reducción de varios componentes de la unidad funcional como, por ejemplo, contadores de hora y de maniobra, relés térmicos de sobrecarga convencional, transformadores de corriente, etc.
- Reducción del cableado de mando
- Montaje del Relé Inteligente en riel DIN o placa de montaje Rearmado del relé a distancia, reduciendo el tiempo de mantenimiento
- Rapidez y precisión en la identificación de defectos
- Automatización de los registros y estadísticas de defecto por unidad
- Red Profibus-DP normalizado mundialmente (no es red propietaria) o DeviceNet
- Comunicación con otros PLCs en red de protocolo abierto


Ejemplo de CCM Inteligente con Red Profibus

Ejemplo de CCM Inteligente con Red DeviceNet

- 1 Controlador programable
- (2) Interfaz hombre-máquina
- Cable principal (trunk line)
- Cable secundario (drop line)
- (5) Derivación en T
- (6) Arrancador suave, convertidor de frecuencia o relé inteligente
- Terminación de la red

CCMs de Baja Tensión Resistentes a los Arcos Internos

El Fenómeno del Arco Eléctrico

El arco eléctrico es un fenómeno producido tras una descarga que tiene lugar cuando la tensión eléctrica presente entre dos puntos supera el límite de rigidez dieléctrica del aire interpuesto. El arco permanece activo hasta que la tensión existente en sus extremos proporciona la energía suficiente para compensar la cantidad de calor disipado y para mantener las condiciones adecuadas de temperatura. Si el arco se alarga y se enfría, dejan de existir las condiciones para su subsistencia y se extingue.

Efectos del Arco Eléctrico en el Interior de un Cuadro

Se puede esquematizar en 4 fases:

- Fase de compresión
- Fase de expansión
- Fase de emisión
- Fase térmica

Informaciones Adicionales

- Presión: se estima que una persona ubicada a 60 cm de distancia del arco asociado a un defecto de unos 20 kA se ve sometida a una fuerza de 225 kg; además, la repentina onda de presión puede causar daños irreversibles en el tímpano
- Temperatura que puede alcanzar el arco eléctrico: alrededor de los 7.000 8.000 °C
- Ruido: un arco eléctrico puede emitir hasta 160 db.

Efectos del Arco Eléctrico en las Personas

- Quemaduras
- Lesiones debidas a la proyección de materiales
- Daños en el oído
- Inhalación de gases tóxicos

Generalidades

Las causas de un defecto de arco pueden ser tanto técnicas como no técnicas, entre estas últimas, las más recurrentes son:

- Errores del personal: sobre todo durante las operaciones de mantenimiento
- Operaciones de puesta en servicio no suficientemente precisas
- Mantenimiento deficiente: sobre todo frente a severas condiciones ambientales

Entre las causa técnicas pueden destacarse:

- Fallo del aislamiento (75%)
- Sobretensiones (15%)
- Defectos constructivos de los componentes (10%)

Normalización

La normativa de los cuadros de baja tensión (IEC 61439) no proporciona ninguna indicación precisa relativa a los defectos de arco. Sin embargo, el documento IEC 61641 está muy extendido como "Guía para la prueba de arco interno de los cuadros eléctricos de baja tensión en condiciones de arco interno".

De acuerdo a lo establecido en el documento IEC 61641, un cuadro de baja tensión resistente a arcos internos debe:

- Limitar el riesgo de daños/accidentes del personal, en caso de fenómeno de arco interno
- Limitar el daño del cuadro sólo a la sección afectada por el defecto, permitiendo asegurar (operaciones de emergencia) las partes no implicadas

Los CCMs WEG mecánicamente resistentes al arco interno son fabricados con una estructura mecánica reforzada para resistir las exigencias (sobrepresiones) provocadas por un arco en el interior del cuadro. Además de eso, poseen en el interior del cuadro un recorrido preferencial para la salida de los gases a alta temperatura, producidos por el arco.

Dimensiones (mm)

CCM Estándar

	Columna de entrada						
Entrada de cables	Separación interna	Altura (x)	Ancho (y)	Profundidad (z)			
	3b		500	600			
	4b		500	700			
Inferior	3b		1.000	600			
illienoi	4b	2.300 hasta 3.150 A	1.000	700			
	3b	2.400 para 4.000 A	750	600			
	4b			700			
Superior	3b			850			
Superior	4b			650			
	Column	a para unidades funcionales fijas o ex	ktraíbles				
Entrada de cables	Separación interna	Altura (x)	Ancho (y)	Profundidad (z)			
Inferior	3b			600			
IIIIeIIOI	4b	2.300 hasta 3.150 A		700			
Cuparior	3b	2.400 para 4.000 A	750	950			
Superior	4b			850			

Dimensiones (mm)

CCM Resistente a Arco Interno

Columna de entrada						
Entrada de cables	cables Separación interna Altura (x) Ancho (y) Profundidad (z)					
Inferior	4b	2.300 hasta 3.150 A		800		
Superior	40	2.400 para 4.000 A	750	950		
	Column	a para unidades funcionales fijas o e	xtraíbles			
Entrada de cables	Separación interna	Altura (x)	Ancho (y)	Profundidad (z)		
Inferior	4b	2.300 hasta 3.150 A	750	800		
Superior	40	2.400 para 4.000 A	750	950		

Política Ambiental

Garantizamos el menor impacto ambiental de nuestros productos y de los procesos de fabricación por:

Estar en cumplimiento con la legislación medioambiental aplicable.

Mejoras contínuas a através de metas y objetivos medioambientales.

Actuar preventivamente en la búsqueda de proteger el medio ambiente.

Procesos de fabricación ecológicamente eficientes que permiten ahorrar los recursos naturales.

WEG Green

Certificaciones

ISO 50001:2011 ISO 14001:2014 ISO 9001:2008

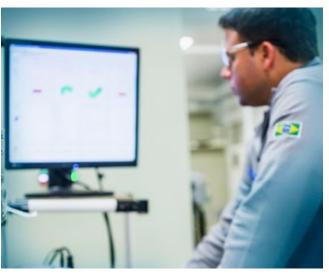
¡La Eficiencia para Nosotros es Crear Soluciones Sostenibles!

Presencia Global

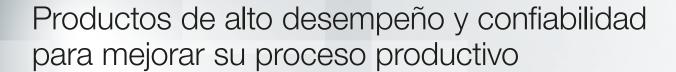
Con más de 30.000 colaboradores en todo el mundo, somos uno de los mayores productores mundiales de motores eléctricos, equipos y sistemas electro-electrónicos. Estamos constantemente expandiendo nuestro portafolio de productos y servicios con conocimiento especializado y de mercado. Creamos soluciones integradas y personalizadas que van desde productos innovadores hasta asistencia postventa completa.

Con el know-how de WEG, los Centro de Control de Motores de Baja Tensión CCM son la elección adecuada para su aplicación y su negocio, con seguridad, eficiencia y confiabilidad.

Disponibilidad es contar con una red global de servicios



Alianza es crear soluciones que satisfagan sus necesidades



Competitividad es unir tecnología e innovación

Excelencia es desarrollar soluciones que aumentan la productividad de nuestros clientes, con una línea completa para automatización industrial.

Acceda a:

www.weg.net

